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ABSTRACT
Combining individual p-values to aggregate multiple small effects has a long-standing interest in statistics,
dating back to the classic Fisher’s combination test. In modern large-scale data analysis, correlation and
sparsity are common features and efficient computation is a necessary requirement for dealing with massive
data. To overcome these challenges, we propose a new test that takes advantage of the Cauchy distribution.
Our test statistic has a simple form and is defined as a weighted sum of Cauchy transformation of individual
p-values. We prove a nonasymptotic result that the tail of the null distribution of our proposed test statistic
can be well approximated by a Cauchy distribution under arbitrary dependency structures. Based on this
theoretical result, the p-value calculation of our proposed test is not only accurate, but also as simple as
the classic z-test or t-test, making our test well suited for analyzing massive data. We further show that
the power of the proposed test is asymptotically optimal in a strong sparsity setting. Extensive simulations
demonstrate that the proposed test has both strong power against sparse alternatives and a good accuracy
with respect to p-value calculations, especially for very small p-values. The proposed test has also been
applied to a genome-wide association study of Crohn’s disease and compared with several existing tests.
Supplementary materials for this article are available online.
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1. Introduction

Methods for combining individual p-values or test statistics are
of historically substantial interest in statistics. A few well-known
classical methods include the Fisher’s combination test (Fisher
1932) and the sum-of-squares type tests. However, in mod-
ern high-throughput data analysis where there is only a small
fraction of significant effects, these traditional tests are ineffec-
tive and can have substantial power loss (Koziol and Perlman
1978; Arias-Castro, Candès, and Plan 2011). For example, in
genome-wide association studies (GWAS), massive amounts of
genetic variants, for example, single nucleotide polymorphism
(SNP), are collected while only a small number of them are
expected to be related to the phenotype of interest (e.g., a dis-
ease status). Various methods have been developed to improve
power for detecting sparse alternatives in this situation. The
Tippett’s minimum p-value test (Tippett 1931), the higher criti-
cism test (Donoho and Jin 2004), and the Berk–Jones test (Berk
and Jones 1979) are particularly popular and have received
substantial attention in the literature. As all three tests combine
individual p-values to aggregate multiple effects, we will also
refer to them as combination tests hereafter.

In practice, the individual test statistics or p-values are often
correlated. For instance, SNPs could be highly correlated due to
linkage disequilibrium. To control the Type I error and draw
valid statistical inferences, the correlation structure should be
taken into account in the p-value calculation. Here and through-
out this paper, by p-value calculation, we always mean the
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p-value of a combination test, rather than the individual p-values
that can be readily calculated. To the best of our knowledge,
no analytic methods are available for the p-value calculation
of the Tippett’s minimum p-value, higher criticism, and Berk–
Jones tests under dependence structures. While permutation or
other approaches based on numerical simulations (e.g., Liu and
Xie 2018) can be used to incorporate the correlation informa-
tion, they are computationally burdensome or even at times
intractable in the analysis of massive data, especially in the
following situations. First, when a combination test needs to be
performed numerous times, such as in large-scale multiple test-
ing, it is too time consuming to use the permutation approach.
Here and throughout this article, by large-scale multiple testing,
we always mean a large number of combination tests instead of
individual tests. Second, when the p-value of a combination test
is extremely small, permutation would require very intensive
computation as a vast number of simulations are needed to
stabilize the calculation. This situation is particularly important
in large-scale multiple testing, where practitioners care about
the validity of extremely small p-values. Third, when the num-
ber of individual p-values in a combination test, denoted by
d, is very large (e.g., d = 106), the permutation approach
is also impractical. Therefore, there is an increasing demand
for developing tests whose p-values can be calculated analyti-
cally under dependence. Recently, Barnett, Mukherjee, and Lin
(2017) generalized the higher criticism test to incorporate the
dependency structure and provided an analytic approximation
method to compute the p-value of their new test. However,
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their analytic method is not accurate for extremely small p-
values and still requires very intensive computation, even for a
moderately large d (e.g., d > 100). In summary, due to a lack of
computational efficiency and accuracy of p-values, none of the
existing tests can handle large-scale data effectively.

Our main motivating examples of these challenging situa-
tions are also from GWAS, where the genetic data could contain
hundreds of thousands of subjects and millions of SNPs and fast
computation is a necessary requirement for the analysis of such
big data. One commonly used analysis approach in GWAS is
to perform set-based analysis (Wu et al. 2010), which divides
the SNPs into sets/groups (e.g., genes) based on some biological
information and tests the association between each SNP-set and
the phenotype one at a time. The combination tests are useful
for testing the significance of each SNP-set by aggregating the
p-values of individual SNPs. In each SNP-set, the number of
SNPs is not very large and often in dozens. However, there are
tens of thousands of sets which need to be tested, requiring a
fast calculation of the p-value for each SNP-set. In addition, a
stringent significance threshold needs to be applied to account
for multiple testing and the significant SNP-sets, which are the
primary interest of practitioners, have very small p-values (e.g.,
< 10−6). Therefore, the p-value of a combination test needs to
be accurate for exceedingly small p-values. Furthermore, one
may be also interested in inferring whether there is any overall
effect in the whole genome with millions of SNPs all together.
This corresponds to the high-dimensional situation with a very
large d.

In this article, we propose a new combination test based on
the Cauchy distribution and refer to it as the Cauchy combi-
nation test. Similar to the Fisher’s combination test, the new
test statistic is defined as the weighted sum of transformed
p-values (Xie, Singh, and Strawderman 2011; Xie and Singh
2013), except that the p-values are transformed to follow a
standard Cauchy distribution. We prove that the tail of the
null distribution of the proposed test statistic is approximately
Cauchy under arbitrary correlation structures. According to this
theoretical result, we then propose to calculate the p-value of
the Cauchy combination test by the cdf of a standard Cauchy
distribution. Similar to the classic z-test or t-test, our test has
low computational requirements for p-value calculation and
therefore is (potentially) able to be used routinely in large-
scale data analysis with a vast number of combination tests.
We further establish similar theoretical result for the high-
dimensional situation where the number of p-values d diverges.
An extensive simulation study is carried out in Section 4, which
shows that under general correlation structures, the analytic
p-value approximation by the Cauchy distribution is accurate,
especially for extremely small p-values. In fact, the smaller the p-
value, the more accurate the approximation. In addition, parallel
to the optimality theory for the minimum p-value test shown
in Arias-Castro, Candès, and Plan (2011), we prove that the
power of our test is asymptotically optimal in a strong sparsity
setting. In summary, the Cauchy combination test is well suited
to deal with the challenges posed by sparsity, correlation, high-
dimensionality and large scales, which, for example, are the
situations we encountered in GWAS.

A related and more profound theory regarding the Cauchy
distribution was also established in a recent work by Pillai and

Meng (2016), which showed a remarkable result that the sum
of some class of dependent Cauchy variables could be exactly
Cauchy distributed. Our idea of using the Cauchy distribution
was motivated from the strong need in GWAS for computation-
ally scalable methods, and was originated from the observation
that the sum of independent standard Cauchy variables follows
the same distribution as the sum of perfectly dependent stan-
dard Cauchy variables. We provide a detailed discussion on the
connections and differences between Pillai and Meng’s (2016)
and our work in Section 2.2.

The rest of the article is organized as follows. Section 2
presents our main theorems about the null distribution of the
Cauchy combination test statistic. In Section 3, we establish
the asymptotical optimality of the power of the new test in
the strong sparsity setting. In Section 4, we conduct extensive
simulations to evaluate the accuracy of the p-value calculation
of the proposed test and compare its power with a few exist-
ing tests. We use an analysis of GWAS data to demonstrate
the effectiveness of our test. Some concluding remarks and a
discussion of future research are given in Section 5. All the
technical proofs and additional simulation results are relegated
to the supplementary materials.

2. Null Distribution

Let pi be the individual p-value, for i = 1, 2, . . . , d. We define
the Cauchy combination test statistic as

T =
d∑

i=1
ωi tan{(0.5 − pi)π}, (1)

where the weights ωis are nonnegative and
∑d

i=1 ωi = 1. Given
that pi is uniformly distributed between 0 and 1 under the null,
the component tan{(0.5 − pi)π} follows a standard Cauchy
distribution.

When pi’s are independent or perfectly dependent (i.e., all
the pi’s are equal), it is easy to see that the test statistic T has a
standard Cauchy distribution under the null. This phenomenon
results from the closeness of Cauchy distribution under convo-
lution and is unique to our Cauchy combination test statistic.
In fact, for the minimum p-value, higher criticism, Berk–Jones,
and many other test statistics, the null distribution in the inde-
pendent case is completely different from that in the perfectly
dependent case. This simple observation indicates that corre-
lation can have a substantial impact on the null distribution of
these existing tests and should not be ignored. While correlation
also affects the null distribution of the Cauchy combination test
statistic, we will show next that the impact on the tail is very
limited.

2.1. Nonasymptotic Approximation for the Null
Distribution

To investigate the null distribution in the presence of correla-
tion, we assume that the p-values are calculated from z-scores
(i.e., test statistics that follow normal distributions). Specifically,
let X = (X1, X2, . . . , Xd)

T , where Xi is a test statistic (or z-score)
corresponding to the individual p-value pi.
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Denote E(X) = μ and cov(X) = �. Because a test statistic
must have a known null distribution to obtain its critical value
or p-value, we can always rescale the individual test statistic Xi
to have variance 1. Thus, without loss of generality, we assume
that � is a correlation matrix and then the individual p-value is
given by 2{1 − �(|Xi|)}. For testing the global null hypothesis
that H0 : μ = 0, we can rewrite the Cauchy combination test
statistic (1) with respect to X as

T(X) =
d∑

i=1
ωi tan[{2�(|Xi|) − 3/2}π ].

Large values of T(X) provide evidence against the global null
hypothesis H0.

We assume the following condition about the test statistics
Xis.

(C.1) (Bivariate normality) For any 1 ≤ i < j ≤ d, (Xi, Xj)T

follows a bivariate normal distribution.

The bivariate normal condition (C.1) is mild and also assumed
in Efron (2007), where the author studied a similar topic, that is,
controlling the false discovery rate under dependence.

The following theorem provides a nonasymptotic approx-
imation to the null distribution of T(X) under any arbitrary
correlation structure �.

Theorem 1. Suppose that the bivariate normality condition
(C.1) holds and E(X) = 0. Then for any fixed d and any
correlation matrix � ≥ 0, we have

lim
t→+∞

P{T(X) > t}
P{W0 > t} = 1,

where W0 denotes a standard Cauchy random variable.

Theorem 1 indicates that the test statistic T(X) still has
approximately a Cauchy tail under dependency structures. Note
that T(X) is defined as a weighted sum of “correlated” standard
Cauchy variables. Roughly speaking, because of the heaviness
of the Cauchy tail, the correlation structure � only has limited
impact on the tail of T(X).

As a p-value corresponds to the tail probability of the null
distribution, Theorem 1 suggests that we can use the standard
Cauchy distribution to approximate the p-value of the test based
on T(X). Let tα be the upper α-quantile of the standard Cauchy
distribution, that is, P{W0 > tα} = α. We define an α-level test
as

Rα(X) = I{T(X) > tα} (2)

and refer to it as the Cauchy combination test, where I(·) is an
indicator function.

Suppose that we observe T(x) = t0. From the cdf of stan-
dard Cauchy distribution, the p-value of the test can be simply
approximated by

p − value = 1/2 − (arctan t0)/π . (3)

Therefore, given the observed test statistic, the computation cost
of calculating p-value is almost negligible, making the Cauchy
combination test Rα(X) well suited for analyzing massive data.
Furthermore, Theorem 1 guarantees that the approximation

should be particularly accurate for very small p-values, which
are of primary interest in large-scale multiple testing but difficult
to be calculated accurately.

Note that P{T(X) > tα} represents the actual size, denoted
by sα , of the test Rα(X). Theorem 1 can be equivalently stated
as the ratio of the size to significance level converges to 1 as the
significance level tends to 0, that is,

lim
α→0

sα
α

= 1.

Simulation studies in Section 4.1 show that when the signifi-
cance level α is moderately small, this ratio would already be
close to 1 under a variety of correlation matrices.

Theorem 1 can also be extended to the cases where the
weights, wis, are random and independent of the test statistics:

Corollary 1. If the weights, wi’s, are random variables and inde-
pendent of X, then Theorem 1 still holds.

2.2. Why Cauchy Distribution?

In statistical literature, the Cauchy distribution mainly serves
as a counter example, such as the nonexistence of the mean
and an exception to the Law of Large Number. In this sense,
quoting Pillai and Meng (2016), “some introductory courses
have given the Cauchy distribution the nickname Evil.” Probably
for these reasons, the Cauchy distribution has seldom been used
in statistical inference. Motivated by studying the large sample
behavior of the Wald tests, Pillai and Meng (2016) recently
revealed one of the angel aspects of Cauchy distribution and
proved a surprising result that was originally conjectured by
Drton and Xiao (2016). Specifically, let Y = (Y1, . . . , Yd)

T and
Z = (Z1, . . . , Zd)

T be iid Nd(0, �). Note that Yi/Zi is Cauchy
distributed. Pillai and Meng (2016) proved that for an arbitrary
covariance matrix �,

∑d
i=1 ωi(Yi/Zi) still follows a standard

Cauchy distribution, where
∑d

i=1 ωi = 1 and ωi ≥ 0 for any
i = 1, . . . , d.

Both their result and our Theorem 1 indicate that the Cauchy
distribution could be insensitive to certain types of dependency
structures. Specifically, their result shows that the weighted sum
of a class of dependent Cauchy variables can still be a Cauchy
variable, while our Theorem 1 considers another class of depen-
dent Cauchy variables and indicates that the weighted sum of
them still has a Cauchy tail. Therefore, we can use the Cauchy
distribution to construct test statistics to deal with dependence
structures, which are challenging to be accounted for in
general.

While sharing a similar interpretation with Pillai and Meng
(2016), our result is substantially different and has unique
contributions in terms of both methodology and theory. First
and foremost, Pillai and Meng’s (2016) result is not a practical
method and was motivated from a theoretical interest of
studying the large-sample behaviour of the Wald test. After all,
we rarely have a test statistic that is the ratio of two normal
variables in practice. In contrast, the Cauchy combination
test that we proposed maps the p-values to Cauchy variables
and has a wide range of applications. Second, there is also
fundamental distinctions between our and Pillai and Meng
(2016)’s theories. Let Vi = tan[{2�(|Xi|) − 3/2}π ] denote
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the Cauchy variable in our theory and Wi = Yi/Zi denote the
Cauchy variable in theirs, where i = 1, 2, . . . , d. While Vi and
Wi have the same marginal distribution, the joint distribution
of Vi’s is completely different from that of Wi’s. Therefore, the
test statistics

∑
ωiVi and

∑
ωiWi might follow very distinct

distributions. In fact, our proof strategy for Theorem 1 is also
completely different from that in Pillai and Meng (2016). In
addition, because the bivariate normality condition assumed
in our Theorem 1 is much weaker than the joint normality
assumption in Pillai and Meng (2016), our result allows for a
broader class of dependent Cauchy variables than theirs. More
discussions about the bivariate normality condition in high
dimensions are provided in Section 2.3.

2.3. Asymptotic Approximation for the Null Distribution in
High Dimensions

To establish the null distribution in the high-dimensional situa-
tion where the number of p-values d is very large and diverging,
we further assume the following conditions on the correlation
matrix �.

(C.2) λmax(�) ≤ C0 for some constant C0 > 0, where λmax(�)

denotes the largest eigenvalue of �.
(C.3) max1≤i<j≤d σ 2

ij ≤ σ 2
max < 1 for some constant 0 <

σ 2
max < 1, where σij is the (i, j)th element of �.

Conditions (C.2) and (C.3) on the correlation matrix are mild
and common assumptions in the high-dimensional setting (see,
e.g., Cai, Liu, and Xia 2014).

The following theorem shows that the Cauchy approximation
for the null distribution is still valid when the dimension d
diverges.

Theorem 2. Suppose that conditions (C.1), (C.2), and (C.3) hold
and E(X) = 0. If d = o(tc) for any constant 0 < c < 1/2, we
have

lim
t→+∞

P{T(X) > t}
P{W0 > t} = 1,

where W0 denotes a standard Cauchy random variable.

In addition to the theoretical justification provided in
Theorem 2, the Cauchy combination test also offers advantages
that make it appealing in the high-dimensional situation from
a practical point of view. We illustrate the challenges and
the advantages of the Cauchy combination test in the high-
dimensional situation by the following example. Let Z =
(Z1, Z2, . . . , Zd) be an n×d fixed design matrix and Y be a vector
of n iid responses. Assume that Y and Zi’s are standardized to
have mean 0 and variance 1. To test the marginal association
between Y and Zi’s, we have the individual test statistics defined
as X = ZTY/

√
n. Many classic tests use Xi as the test statistic,

such as the Cochran–Armitage trend test that is commonly
used in GWAS for testing the association between a disease
status and individual SNPs. When the p-values of all the SNPs
in the genome are combined for a global significance, d is in the
hundreds of thousands or even millions.

First, the correlation matrix � is highly singular in the high-
dimensional situation, with a rank less than the sample size

n that could be much smaller than the dimension d. In the
above example, � = ZTZ/n. For the minimum p-value, higher
criticism, Berk–Jones, and many other tests, a highly singu-
lar correlation matrix would have a substantial impact on the
null distribution and is difficult to be accounted for. Note that
perfect dependence is a special case of a highly singular cor-
relation matrix, and that the Cauchy combination test statistic
follows exactly a standard Cauchy distribution in this case. Thus,
the Cauchy approximation should be particularly accurate in
the high-dimensional situation. Our simulation study in Sec-
tion 4.1 also confirms this expectation. Moreover, as the p-
value of our test is calculated by a simple explicit formula (3)
without requiring the information of � that could be very big in
the high-dimensional situation, there is no computational issue
for the Cauchy combination test even when d is exceedingly
large.

Second, the bivariate normality condition in Theorems 1 and
2 (also in Efron 2007) is mild and appropriate in the high-
dimensional setting. To see this, we compare it with the stronger
condition of joint normality (i.e., X ∼ Nd(μ, �)), which is
commonly assumed in the literature when dependency struc-
tures are considered (see, e.g., Hall and Jin 2010; Fan, Han, and
Gu 2012; Fan and Han 2016). Consider the aforementioned
example when the response is not normally distributed, such
as a binary response. Both the bivariate and joint normality
conditions are on the basis of multivariate central limit theorem
(CLT). However, due to the convergence rate of CLT, X may
not jointly converge to a multivariate normal distribution in
the high-dimensional scenario where d increases with n at a
certain rate. See Chernozhukov, Chetverikov, and Kato (2013,
2014) for recent reviews on this topic. Therefore, it is not realistic
to assume the joint normality of X when d is comparable with
or even much larger than n. The bivariate normality, however,
is a much weaker assumption and still reasonable in the high-
dimensional setting.

2.4. Remarks

Remark 1. According to the test statistic (1) and p-value calcu-
lation (3), our test only requires the individual p-values (and the
prespecified weights) as input. The bivariate normality condi-
tion and the correlation matrix � are only used to study the null
distribution of the test statistic and are actually not needed for
the application of our Cauchy combination test itself.

Remark 2. The weights ωi’s add flexibility to incorporate possi-
ble domain knowledge to boost power. For example, in GWAS,
the biological information of genetic variants (e.g., annotation)
can be integrated to improve the analysis power (Lee et al. 2014).
In comparison, to the best of our knowledge, the minimum
p-value, higher criticism, and Berk–Jones tests do not allow
for incorporation of weights, as all of them have a maximum-
type test statistic. In the absence of prior knowledge, the equal
weights (i.e., ωi = 1/d) can be employed.

Remark 3. Because the null distribution of T(X) is symmetric,
that is, P{T(X) > t} = P{T(X) < −t} for any t ∈ R, it is trivial
that Theorem 1 also holds for the lower tail of the distribution
of T(X), that is, limt→−∞ P{T(X) < t}/P{W0 < t} = 1.
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Remark 4. As mentioned in Remark 1, the proposed test only
takes the individual p-values as input. Therefore, our method
can also be useful in applications where the original data is
difficult to access and only summary statistics, such as the indi-
vidual test statistics or p-values, are available. For example, in
GWAS, the original data can be difficult to obtain due to various
reasons including consent and privacy issues. In fact, statisti-
cal analysis based on summary statistics has emerged with an
increasing demand. Recently developed methods include Wen
and Stephens (2010), Yang et al. (2012), Lee et al. (2014), and
Finucane et al. (2015).

Remark 5. If the data are discrete and certain exact tests are
used (see, e.g., Liu, Liu, and Xie 2014), the individual p-values
may not exactly follow the uniform distribution U[0, 1] under
the null. In many applications such as GWAS with a binary out-
come (Wu et al. 2010, 2011), the p-values are often conservative,
that is, stochastically smaller than U[0, 1]. Let X̃ = (X̃1, . . . , X̃d),
where X̃i is a test statistic corresponding to the p-value pi and
follows a normal distribution with mean 0 and variance less than
1. Then the p-value pi = 2{1 − �(|X̃i|)} is conservative. The
following corollary shows that the Cauchy combination test can
still protect the Type I error and provide valid inference in the
presence of conservative individual p-values.

Corollary 2. Under the same assumptions of Theorem 1 (or
Theorem 2) except that var(X̃i) ≤ 1 for any i = 1, 2, . . . , d,
we have

lim
t→+∞

P{T(X̃) > t}
P{W0 > t} ≤ 1.

3. Power

In this section, we study the asymptotic power of the proposed
Cauchy combination test Rα(X) under sparse alternatives. Here
asymptotics refers to d tending to infinity. We follow the theoret-
ical setup of Donoho and Jin (2004). Assume that the individual
test statistics X ∼ Nd(μ, �), where � is a banded correlation
matrix, that is, σij = 0 for any |i − j| > d0 for some positive
constant d0 > 1. Let μi denote the coordinates of μ for i =
1, 2, . . . , d. We are interested in testing the global null hypothesis
that H0 : μ = 0, against alternatives where only a small number
of μis are nonzero. Denote S = {1 ≤ i ≤ d : μi 	= 0} as
the set of signals or nonzero effects. Suppose that the number of
signals |S| = dγ , where |S| is the cardinality of S and the sparsity
parameter 0 < γ < 1/2. The signals are assumed to have the
same magnitude, that is, |μi| = μ0 > 0 for all i ∈ S.

Theorem 3. Suppose that min1≤i≤d ωi ≥ c0/d for some constant
c0 > 0. Let μ0 = √

2r log d, where r > 0. For any α > 0,
r > (1 − √

γ )2 and 0 < γ < 1/2, we have

lim
d→+∞

P{Rα(X) = 1} = 1.

Theorem 3 states that the power of the Cauchy combination
test converges to 1 for any significance level α > 0, or equiva-
lently, that the sum of Type I and II errors can vanish asymptot-
ically, under sparse alternatives. Furthermore, Theorem 3 also
indicates that the Cauchy combination test attains the optimal

detection boundary defined in Donoho and Jin (2004) in the
strong sparsity situation when 0 < γ < 1/4.

The power of our proposed test has some similarity to that
of the minimum p-value test. In fact, Arias-Castro, Candès,
and Plan (2011) showed that the minimum p-value test also
attains the optimal detection boundary when 0 < γ < 1/4.
Intuitively, the minimum p-value test has good power against
sparse alternatives since it uses the smallest individual p-value
to represent the overall significance of a set of variables. In
contrast, the Cauchy combination test statistic (1) transforms
individual p-values to standard Cauchy variables. It can be easily
seen that small p-values correspond to very large values of a
Cauchy variable and the sum in (1) is essentially dominated
by a few of the smallest p-values (see a toy example in Table 1
in the supplementary materials). Roughly speaking, the Cauchy
combination test uses the few smallest p-values to represent the
overall significance. Therefore, it is expected to also have strong
power against sparse alternatives.

The theoretical analysis here only states the asymptotic
power under banded correlation matrices. To examine the
finite-sample power performance under general correlation
structures, extensive simulation studies are carried out in
Section 4.2 and show that the Cauchy combination test has
robust power across a range of correlation structures and
sparsity levels compared with the existing tests. We also provide
some discussions about the finite-sample power of the Cauchy
combination test in Section 3 in the supplementary materials.

4. Applications

We evaluate the p-value calculation accuracy of the Cauchy
combination test under a variety of hypothetical and real-data-
based correlation matrices. We also compare the power of our
proposed test with three existing tests that have strong power
against sparse alternatives, that is, the minimum p-value (Tip-
pett 1931), higher criticism (Donoho and Jin 2004), and Berk–
Jones (Berk and Jones 1979) tests. Throughout this section, the
weights, ωis, in the Cauchy combination test statistic are chosen
to be 1/d for all i = 1, 2, . . . , d.

For both real-data analysis and parts of the simulations,
we use the data of a Crohn’s disease genome-wide association
study (Duerr et al. 2006), which aims at identifying SNPs or
genes that are associated with the inflammatory bowel disease.
These data contain 1028 independent subjects from the non-
Jewish population. After similar data quality control as in Duerr
et al. (2006), the dataset used in our analysis consists of 293,426
SNPs and 997 subjects, with 498 cases and 499 controls. SNPs are
grouped into 15,279 genes on chromosomes 1–22 according to
the Genome Build UCSC hg17 assembly. The gene size (number
of SNPs) ranges from 1 to 705 and is highly skewed to the
right.

4.1. Accuracy of p-Value Calculation

We use simulations to examine the accuracy of p-value cal-
culation based on the Cauchy approximation under various
correlation structures and different dimensions. The vector of
individual test statistics X is generated from Nd(0, �) under
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the null hypothesis. We consider six values of the dimension
d, that is, d = 5, 20, 50, 100, 300, 500, for each of the following
correlation matrix � = (σij).

• Model 1 (AR(1) correlation): For each d, σij = ρ|i−j| for
1 ≤ i, j ≤ d, where ρ = 0.2, 0.4, 0.6, 0.8, 0.99. There are
30 conditions in total, corresponding to six dimension values
and five correlation matrices.

• Model 2 (Polynomial decay): For each d, σii = 1 and σij =
1

0.7+|i−j|ρ for 1 ≤ i 	= j ≤ d, where ρ = 0.5, 1.0, 1.5, 2.0, 2.5.
There are 30 conditions in total.

• Model 3 (Singular matrices): For each d, let A = (aij)

be a (d/5) × d matrix, where aij = ρ|i−j| and ρ =
0.2, 0.4, 0.6, 0.8, 0.99. Further let D = (dij) be a diagonal
matrix with diagonal elements dii = (ãii)−1/2, where ãii is
the ith diagonal of ATA. Then we take � = DTATAD. There
are 30 conditions in total.

• Model 4 (Real genotypes): For each d, we randomly select
10 genes from the Crohn’s disease data that have or approx-
imately have d SNPs. Then we take � to be the sample
correlation matrix of SNPs in a gene. There are 60 conditions
in total.

Models 1 and 2 are commonly used in simulations. The
singular matrices constructed in Model 3 aim to mimic the high-
dimensional situation and contain many large and moderate
correlation coefficients. We also consider realistic correlation
structures in genetic data through Model 4. Since SNPs could be
highly correlated due to linkage disequilibrium, the correlation
matrices in Model 4 often contain very strong correlations (e.g.,
0.99).

Recall that our Theorem 1 indicates that limα→0 sα/α =
1, where sα denotes the size of the Cauchy combination test.
For each correlation matrix � specified above, we generate 108

Monte Carlo samples to evaluate the empirical size at signifi-
cance levels α = 10−1, 10−2, 10−3, 10−4, 10−5, and use the ratio
of empirical size to significance level to reflect the accuracy of
p-value calculation.

The results are summarized by boxplots and shown in Fig-
ure 1. It can be seen that the Type I error of the Cauchy combi-
nation test is well controlled in general. As the significance level
decreases, the Cauchy approximation becomes more accurate.
For very small significance levels such as α = 10−5, the Monte
Carlo errors are not negligible and are in fact the main cause
of the variations in the boxplots. Given the total number of our
simulation conditions (i.e., 150), the ratio of empirical size to
significance level for α = 10−5 is not significantly different from
1, which indicates good accuracy for extremely small p-values.

Furthermore, under real correlation structures in Model 4
that contain very strong correlations, the Type I error is still well
controlled. This is expected because the perfect dependency is
also an extreme case of strong correlation. Moreover, it can be
seen from the result of Model 3 that the accuracy is particulary
good under singular correlation matrices, which agrees with our
discussion in Section 2.3.

To examine the accuracy of the p-value calculation in a
more challenging high-dimensional scenario with an exceed-
ingly large d, we consider the following correlation matrix �

based on real genomic data.

• Model 5 (High-dimensional singular matrix): We take � to
be the sample correlation matrix of all the SNPs in the Crohn’s
disease data. Specifically, � is a highly singular matrix with
dimension d = 293,426 and rank equal to the sample size
n = 997.

Because the computation for a large � is very intensive, we
use 106 Monte Carlo samples to calculate the empirical sizes.
Figure 2 shows the simulation result and demonstrates that
the p-value calculation is still accurate under high-dimensional
singular correlation matrix.

We also investigate the accuracy of p-value calculation when
the normality assumption is violated. The simulation setting is
exactly the same as that of Figure 1, except that X is generated
from a multivariate t distribution with 4 degrees of freedom,
that is, X ∼ t4(0, �). The result is presented in Figure 1 in the
supplementary materials and shows a similar phenomena as the
Gaussian case.

4.2. Power Comparison

We compare the power of the Cauchy combination, minimum
p-value, higher criticism, and Berk–Jones tests, which are
denoted by CCT, MinP, HC, and BJ, respectively. More
specifically, we investigate how sparsity and correlation could
influence the power of different tests. Under the alternative,
the vector of individual test statistic X is generated from
Nd(μ, �), where μ = (μi) and � = (σij). Three values of
the dimension d are examined: d = 20, 40, 60. The percentage
of signals (i.e., nonzero μis) is set to be 5%, 10%, and 20%
for each d. All the signals have the same strength μ0, which
is chosen to be

√
3 log(d)/s1/3 to make the power in different

settings comparable, where s denotes the number of signals. The
correlation matrix � is set to have an exchangeable structure,
with σij = ρ for all 1 ≤ i 	= j ≤ d, and a variety of correlation
levels are considered with ρ chosen to be the nonnegative
multiples of 0.05 between 0 and 0.4.

For each �, we first draw 105 Monte Carlo samples to cal-
culate the critical values of CCT, MinP, HC, and BJ at the
significance level 0.05. Here we also use simulation-based crit-
ical values for CCT to make a fair comparison. Then in each
sparsity and correlation setting, 104 simulations are performed
to calculate the power of the four tests.

Figure 3 shows the results and presents that CCT has com-
parable power with the other three tests. MinP is not sensitive
to the magnitude of correlation. But when signals are not very
sparse and weakly dependent, MinP has a considerable power
loss and BJ is most advantageous in this situation. Both HC
and BJ lose power substantially as correlation increases, even in
the case of moderately sparse signals. One possible explanation
for this is that both tests compare the ordered individual p-
value p(i) with the reference value i/d, which is not a correct
reference in the presence of correlation. In contrast, CCT never
has the lowest power among the competing methods across
all the simulation settings in Figure 3, which indicates that it
has more robust power with respect to various sparsity and
correlation levels. Specifically, it outperforms MinP when signals
are not very sparse, and has higher power than HC and BJ in the
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Figure 1. The ratio of empirical size to significance level for Models 1–4 summarized by boxplots. The x-axis is the significance level at α = 10−1, 10−2, 10−3, 10−4, 10−5.

Figure 2. The ratio of empirical size to significance level (dashed lines) for Model 5. The straight line in each plot is the reference line. The plot on the right is a zoom-in
image of the plot on the left. Note that the nonsmoothness and fluctuation of the dashed curve in the right plot is due to the Monte Carlo errors.
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Figure 3. Power comparison of CCT, MinP, HC, and BJ. The x-axis is the correlation strength ρ. The columns from left to right correspond to the dimension d = 20, 40, 60.
The rows from top to bottom correspond to the signal percentage 5%, 10%, and 20%. The signal strength is chosen to make the power in every setting comparable.

case of moderate or strong correlations. In the absence of prior
knowledge of sparsity and correlation, such as scanning genes
in GWAS, CCT would be a robust choice and less likely to miss
important signals. More importantly, the p-value of CCT can be
computed accurately and analytically under general correlation
structures, while the other three tests would require intensive
computation and are not suitable to analyze large-scale data. We
also present the result based on analytic critical values of CCT
in Figure 2 in the supplementary materials, which demonstrates
a similar phenomena.

4.3. Real Genetic Data Analysis

We apply our Cauchy combination test to the Crohn’s disease
genome-wide association study and compare it with the other
three tests (i.e., MinP, HC, and BJ) in terms of power and
computation time. All the analyses are carried out on a computer
node with 2.5 GHz quad-core Intel Xeon E3-1284 CPUs and 32
GB memory.

Firstly, we perform the single-SNP analysis. The individual p-
values of the 293,426 SNPs in the study are obtained based on the

Cochran–Armitage trend test for the association between the
disease status and individual SNPs. Two SNPs are found to be
significant at a level of 0.05 after the Bonferroni adjustment, with
p-values of 2.8×10−8 and 7.5×10−8. The analysis is performed
using the standard software Plink (Purcell et al. 2007) for GWAS
and takes about 3 min. Then we exclude these two SNPs and
apply our proposed test to combine the individual p-values of
the remaining 293,424 SNPs. The Cauchy combination test gives
a p-value of 0.030 < 0.05, which suggests that there still exists
genetic information in the remaining SNPs. The computation
of this step only takes about 1 sec. Note that the Cochran–
Armitage trend test statistics have a correlation matrix � equal
to the sample correlation matrix of SNPs. The result for Model
5 (Figure 2) indicates that the p-value maintains satisfactory
accuracy. In comparison, for the other three tests, permutation
is needed to incorporate the correlation structure � to obtain
accurate p-values. Because of the high dimensionality in this
situation, it is computationally very intensive to use permutation
and we do not provide the results for the other three tests here.

We next perform a gene-based analysis, that is, the p-values
of individual SNPs in a gene are combined to test for an overall
significance of the gene. We apply the Cauchy combination test
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Table 1. p-Values of the most significant genes in analysis of the Crohn’s disease data using the four tests.

Gene d MinP HC BJ CCT

NOD2 8 2.00 × 10−7 1.80 × 10−7 1.20 × 10−7 4.35 × 10−7

IL23R 22 1.20 × 10−7 1.60 × 10−7 3.10 × 10−7 5.84 × 10−7

OR2AT4 5 1.10 × 10−4 8.26 × 10−5 9.31 × 10−5 6.05 × 10−5

RASD2 22 6.86 × 10−5 8.95 × 10−5 9.21 × 10−4 8.45 × 10−5

SLCO2B1 16 1.53 × 10−4 6.96 × 10−5 1.42 × 10−4 1.22 × 10−4

VSX2 5 1.80 × 10−4 1.82 × 10−4 1.95 × 10−3 1.98 × 10−4

TIFA 4 1.66 × 10−4 2.38 × 10−4 7.27 × 10−3 2.00 × 10−4

SLC44A4 6 3.78 × 10−4 1.70 × 10−4 1.00 × 10−3 2.40 × 10−4

GIMAP7 4 5.65 × 10−4 7.70 × 10−4 5.23 × 10−5 5.49 × 10−4

EVI5L 7 2.35 × 10−2 3.18 × 10−3 7.01 × 10−5 8.96 × 10−3

NOTE: The list is sorted in increasing order based on the smallest of the p-values of the Cauchy combination test (CCT).

and the other three tests (i.e., MinP, HC, and BJ) to screen the
15,279 genes in the Crohn’s disease data. The most significant
genes based on the four tests are shown in Table 1. The p-values
of our test are obtained according to (3) and permutation is
employed for computing the p-values of the other three tests.
In particular, we use 108 permutations for the genes listed in
Table 1 and 106 permutations for the rest of genes. All four
tests identify genes IL23R and NOD2 as significant at a level of
0.05 after the Bonferroni adjustment. These two genes are also
found to contain genetic variants associated with the Crohn’s
disease in the literature (Franke et al. 2010). The proposed
Cauchy combination test only takes about 10 sec to complete
the analysis, that is, computing the p-values of all the genes,
compared with nearly 12 days for the other three tests based
on permutation. In addition, our simulation result of Model 4
in Section 4.1 indicates that the p-values of the genes in Table 1
based on the Cauchy combination test should be accurate, since
these genes have very small p-values.

In summary, for either single-SNP or gene-based analysis,
our method can be done within just a few seconds and provide
reasonably accurate p-values, while the other three existing
tests are computationally burdensome for the analysis of large
genomic data.

5. Discussion

In this article, we use the Cauchy distribution to construct a
novel test that not only is powerful against sparse alternatives
but also has accurate and efficient p-value calculations under
arbitrary dependency structures. Our contributions are 3-fold.
First, the proposed Cauchy combination test fills the gap of test-
ing against sparse alternatives. In the case of dense signals, with
a variety of analytic p-value calculation methods, the classical
sum-of-squares tests have been widely used in practice. How-
ever, in the case of sparse signals, none of the existing tests have
efficient p-value calculations, which are of great importance
for analyzing massive or big data. Second, the analytic method
for computing the p-value of our proposed test maintains sev-
eral notable properties, making the test particularly useful in
modern large-scale and high-dimensional data analysis. Finally,
besides the methodological contribution, our Theorem 1 also
has interest on its own. It can be viewed as an extension of
the closeness of Cauchy distribution under convolution from
the independent case to a special dependent case. It is also

established under weak assumptions, essentially requiring only
the bivariate normality of the individual test statistics.

The Cauchy combination test statistic T in (1) can be viewed
as a special case of the general combination scheme based on
the sum of transformed p-values (Xie, Singh, and Strawderman
2011; Xie and Singh 2013), that is,

∑d
i=1 h(pi), where h(·) can be

any monotonically increasing function. Besides the advantages
resulting from the special Cauchy transformation, this general
combination scheme has many other advantages, for example,
being able to make an exact inference in discrete data analysis
and enhance finite sample efficiency (Liu, Liu, and Xie 2014).
It is of great interest to explore other transformations and use
this general combination scheme to develop tests that have other
remarkable features.

While the bivariate normality assumption in Theorem 1 is
appropriate in many cases, there are some applications where the
individual p-values are calculated from test statistics that are not
normally distributed and one can also apply the proposed test to
combine the p-values. We observe through simulations that the
Cauchy approximation is still quite accurate in these situations
where the normality assumption is not satisfied, for example, the
simulation under multivariate t distribution in Figure 1 in the
supplementary materials. Hence, it is interesting to generalize
Theorem 1 to non-Gaussian individual test statistics.

The accuracy of the Cauchy approximation would certainly
depend on the dimension d, the critical value t (or equivalently,
the significance level α), and the correlation structure, which we
have investigated empirically. Other interesting research ques-
tions include deriving nonasymptotic bounds for Theorem 1 to
provide further understandings of the approximation accuracy
by the Cauchy distribution, and establishing a faster conver-
gence rate in the high-dimensional scenario than that in The-
orem 2 under different sets of assumptions.

Supplementary Materials

Software: R software to reproduce the results using simulated data reported
in this article. (CCT-software.zip)
Supplement: Supplemental text includes the proofs of Theorems 1–3,
Corollaries 1 and 2, and technical lemmas, additional simulation results,
as well as some further discussions about the finite-sample power of the
proposed test. (CCT-supplement.pdf)
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